advertisement
PURPOSE: To perform a pilot study of the neuro-peripapillary retinal tissue deformation during the cardiac cycle among healthy eyes, ocular hypertensive (OHT), open angle glaucoma suspect (OAG-S), and early open angle glaucoma (EOAG) patients using video rate optical coherence tomography (OCT) image series. METHODS: OCT line scan sequences of the same region of the optic nerve head (ONH) were obtained from 15 EOAG, 6 OHT, 10 OAG-S, and 10 healthy age-matched eyes. One eye per patient was studied. Changes in the axial distance between the inferotemporal peripapillary retina and the prelaminar tissue, in time, were determined using an automated custom made algorithm. Linear correlations between this neuro-peripapillary retinal (N-PP) deformation and variables measured during the full ophthalmic examination are analyzed. RESULTS: Healthy eyes showed larger N-PP deformation (4.8 ± 1 µm) than the OHT (3.5 ± 0.3 µm, p = 0.015), OAG-S (3.8 ± 0.8 µm, p = 0.045), and EOAG (3.2 ± 0.7 µm, p < 0.001) groups. Eyes with lower ocular pulse amplitude, thinner RNFL's, or worse visual fields showed smaller N-PP deformation, depending on the diagnosis. A linear model to explain deformation within the EOAG group with intraocular pressure and systolic perfusion pressure as predictors was found to be significant (R2 = 0.767, p < 0.001). CONCLUSIONS: Smaller mean N-PP deformation was observed in the EOAG, OAG-S, and OHT groups compared to healthy eyes in this pilot study. The measured deformation correlated with risk factors for the glaucomatous optic neuropathy, but these correlations varied depending on the diagnosis. The role of pulsatile neuro-peripapillary retinal deformation in the pathophysiology of OAG remains to be determined.
Full article
2.13 Retina and retinal nerve fibre layer (Part of: 2 Anatomical structures in glaucoma)
2.14 Optic disc (Part of: 2 Anatomical structures in glaucoma)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)