advertisement
See also comment(s) by Kouros Nouri-Mahdavi •
PURPOSE: Existing summary statistics based upon optical coherence tomographic (OCT) scans and/or visual fields (VFs) are suboptimal for distinguishing between healthy and glaucomatous eyes in the clinic. This study evaluates the extent to which a hybrid deep learning method (HDLM), combined with a single wide-field OCT protocol, can distinguish eyes previously classified as either healthy suspects or mild glaucoma. METHODS: In total, 102 eyes from 102 patients, with or suspected open-angle glaucoma, had previously been classified by 2 glaucoma experts as either glaucomatous (57 eyes) or healthy/suspects (45 eyes). The HDLM had access only to information from a single, wide-field (9×12 mm) swept-source OCT scan per patient. Convolutional neural networks were used to extract rich features from maps derived from these scans. Random forest classifier was used to train a model based on these features to predict the existence of glaucomatous damage. The algorithm was compared against traditional OCT and VF metrics. RESULTS: The accuracy of the HDLM ranged from 63.7% to 93.1% depending upon the input map. The retinal nerve fiber layer probability map had the best accuracy (93.1%), with 4 false positives, and 3 false negatives. In comparison, the accuracy of the OCT and 24-2 and 10-2 VF metrics ranged from 66.7% to 87.3%. The OCT quadrants analysis had the best accuracy (87.3%) of the metrics, with 4 false positives and 9 false negatives. CONCLUSIONS: The HDLM protocol outperforms standard OCT and VF clinical metrics in distinguishing healthy suspect eyes from eyes with early glaucoma. It should be possible to further improve this algorithm and with improvement it might be useful for screening.
Full article
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
6.9.5 Other (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis)