advertisement

Topcon

Abstract #75408 Published in IGR 19-2

Methods for Analyzing Endoplasmic Reticulum Stress in the Trabecular Meshwork of Glaucoma Models

Maddineni P; Kasetti RB; Zode GS
Methods in molecular biology (Clifton, N.J.) 2018; 1695: 121-134


The pathological mechanisms underlying increased outflow resistance at the trabecular meshwork (TM) that is responsible for elevating intraocular pressure (IOP) have not been fully delineated. Recent studies have shown that progressive accumulation of misfolded proteins and induction of endoplasmic reticulum (ER) stress is associated with the pathophysiology of glaucomatous TM damage and IOP elevation. We have shown that known causes of human glaucoma, including expression of mutant myocilin or dexamethasone treatment induce abnormal protein accumulation and ER stress in the TM in vitro and in vivo models. To cope up with abnormal protein accumulation, TM cells activate a cytoprotective pathway of unfolded protein response (UPR). However, chronic ER stress can lead to TM dysfunction and IOP elevation. Using cell culture, mouse models, and human postmortem tissues as well as genetic and pharmacological manipulations, we have analyzed ER stress and UPR mediators in the glaucomatous TM damage and IOP elevation. In this chapter, we have described a detailed protocol for the analysis of protein misfolding and ER stress in TM cells and tissues and its association with glaucomatous TM damage and IOP elevation.

The North Texas Eye Research Institute, CBH-413, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.

Full article

Classification:

2.5.1 Trabecular meshwork (Part of: 2 Anatomical structures in glaucoma > 2.5 Meshwork)
3.6 Cellular biology (Part of: 3 Laboratory methods)



Issue 19-2

Change Issue


advertisement

Topcon