advertisement

Topcon

Abstract #75451 Published in IGR 19-2

Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods

Kazemian P; Lavieri MS; Van Oyen MP; Andrews C; Stein JD
Ophthalmology 2018; 125: 569-577


PURPOSE: To generate personalized forecasts of how patients with open-angle glaucoma (OAG) experience disease progression at different intraocular pressure (IOP) levels to aid clinicians with setting personalized target IOPs. DESIGN: Secondary analyses using longitudinal data from 2 randomized controlled trials. PARTICIPANTS: Participants with moderate or advanced OAG from the Collaborative Initial Glaucoma Treatment Study (CIGTS) or the Advanced Glaucoma Intervention Study (AGIS). METHODS: By using perimetric and tonometric data from trial participants, we developed and validated Kalman Filter (KF) models for fast-, slow-, and nonprogressing patients with OAG. The KF can generate personalized and dynamically updated forecasts of OAG progression under different target IOP levels. For each participant, we determined how mean deviation (MD) would change if the patient maintains his/her IOP at 1 of 7 levels (6, 9, 12, 15, 18, 21, or 24 mmHg) over the next 5 years. We also model and predict changes to MD over the same time horizon if IOP is increased or decreased by 3, 6, and 9 mmHg from the level attained in the trials. MAIN OUTCOME MEASURES: Personalized estimates of the change in MD under different target IOP levels. RESULTS: A total of 571 participants (mean age, 64.2 years; standard deviation, 10.9) were followed for a mean of 6.5 years (standard deviation, 2.8). Our models predicted that, on average, fast progressors would lose 2.1, 6.7, and 11.2 decibels (dB) MD under target IOPs of 6, 15, and 24 mmHg, respectively, over 5 years. In contrast, on average, slow progressors would lose 0.8, 2.1, and 4.1 dB MD under the same target IOPs and time frame. When using our tool to quantify the OAG progression dynamics for all 571 patients, we found no statistically significant differences over 5 years between progression for black versus white, male versus female, and CIGTS versus AGIS participants under different target IOPs (P > 0.05 for all). CONCLUSIONS: To our knowledge, this is the first clinical decision-making tool that generates personalized forecasts of the trajectory of OAG progression at different target IOP levels. This approach can help clinicians determine appropriate, personalized target IOPs for patients with OAG.

Medical Practice Evaluation Center, Division of General Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts.

Full article

Classification:

6.20 Progression (Part of: 6 Clinical examination methods)
6.6.2 Automated (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)



Issue 19-2

Change Issue


advertisement

WGA Rescources