advertisement
PURPOSE: Early detection, monitoring and understanding of changes in the retina are central to the diagnosis of glaucomatous optic neuropathy, and vital to reduce visual loss from this progressive condition. The main objective of this investigation was to compare glaucoma diagnostic accuracy of commercially available optical coherence tomography (OCT) devices (Zeiss Stratus, Zeiss Cirrus, Heidelberg Spectralis and Optovue RTVue, and Topcon 3D-OCT). PATIENTS: 16,104 glaucomatous and 11,543 normal eyes reported in 150 studies. METHODS: Between Jan. 2017 and Feb 2017, MEDLINE®, EMBASE®, CINAHL®, Cochrane Library®, Web of Science®, and BIOSIS® were searched for studies assessing glaucoma diagnostic accuracy of the aforementioned OCT devices. Meta-analysis was performed pooling area under the receiver operating characteristic curve (AUROC) estimates for all devices, stratified by OCT type (RNFL, macula), and area imaged. RESULTS: 150 studies with 16,104 glaucomatous and 11,543 normal control eyes were included. Key findings: AUROC of glaucoma diagnosis for RNFL average for all glaucoma patients was 0.897 (0.887-0.906, n = 16,782 patient eyes), for macula ganglion cell complex (GCC) was 0.885 (0.869-0.901, n = 4841 eyes), for macula ganglion cell inner plexiform layer (GCIPL) was 0.858 (0.835-0.880, n = 4211 eyes), and for total macular thickness was 0.795 (0.754-0.834, n = 1063 eyes). CONCLUSION: The classification capability was similar across all 5 OCT devices. More diagnostically favorable AUROCs were demonstrated in patients with increased glaucoma severity. Diagnostic accuracy of RNFL and segmented macular regions (GCIPL, GCC) scans were similar and higher than total macular thickness. This study provides a synthesis of contemporary evidence with features of robust inclusion criteria and large sample size. These findings may provide guidance to clinicians when navigating this rapidly evolving diagnostic area characterized by numerous options.
University of Saskatchewan, Department of Ophthalmology, Saskatoon, Canada.
Full article6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)