advertisement
PURPOSE: Guinea pigs are increasingly being used as a model of myopia, and may also represent a novel model of glaucoma. Here, optical coherence tomography (OCT) imaging was performed in guinea pigs. In vivo measurements of retinal, choroidal, and optic nerve head parameters were compared with histology, and repeatability and interocular variations were assessed. METHODS: OCT imaging and histology were performed on adult guinea pigs (n = 9). Using a custom program in MATLAB, total retina, ganglion cell/nerve fiber layer (GC/NFL), outer retina, and choroid thicknesses were determined. Additionally, Bruch's membrane opening (BMO) area and diameter, and minimum rim width were calculated. Intraobserver, interocular, and intersession coefficients of variation (CV) and intraclass correlation coefficients (ICC) were assessed. RESULTS: Retina, GC/NFL, outer retina and choroid thicknesses from in vivo OCT imaging were 147.7 ± 5.8 μm, 59.2 ± 4.5 μm, 72.4 ± 2.4 μm, and 64.8 ± 11.6 μm, respectively. Interocular CV ranged from 1.8% to 11% (paired t-test, p = 0.16 to 0.81), and intersession CV ranged from 1.1% to 5.6% (p = 0.12 to 0.82), with the choroid showing the greatest variability. BMO area was 0.192 ± 0.023 mm, and diameter was 493.79 ± 31.89 μm, with intersession CV of 3.3% and 1.7%, respectively. Hyper reflective retinal layers in OCT correlated with plexiform and RPE layers in histology. CONCLUSION: In vivo OCT imaging and quantification of guinea pig retina and optic nerve head parameters were repeatable and similar between eyes of the same animal. In vivo visibility of retinal cell layers correlated well with histological images. ABBREVIATIONS: optic nerve head (ONH), retinal ganglion cell (RGC), spectral domain optical coherence tomography (SD-OCT), enhanced depth imaging (EDI), minimum rim width (MRW), hematoxylin and eosin (H & E).
a College of Optometry , University of Houston , Houston , TX , USA.
Full article3.13.2.2 Posterior Segment (Part of: 3 Laboratory methods > 3.13 In vivo imaging > 3.13.2 Optical Coherence Tomography)
5.3 Other (Part of: 5 Experimental glaucoma; animal models)
3.1 Microscopy (Part of: 3 Laboratory methods)