advertisement

Topcon

Abstract #79845 Published in IGR 20-2

An Electrophysiological Comparison of Contrast Response Functions in Younger and Older Adults, and Those With Glaucoma

Lek JJ; Nguyen BN; McKendrick AM; Vingrys AJ
Investigative Ophthalmology and Visual Science 2019; 60: 442-450


PURPOSE: Aging and glaucoma both result in contrast processing deficits. However, it is unclear the extent to which these functional deficits arise from retinal or post-retinal neuronal changes. This study aims to disentangle the effects of healthy human aging and glaucoma on retinal and post-retinal contrast processing using visual electrophysiology. METHODS: Steady-state pattern electroretinograms (PERG) and pattern visual evoked potentials (PVEP) were simultaneously recorded across a range of contrasts (0%, 4%, 9%, 18%, 39%, 73%, 97%; 0.8° diameter checks, 31° diameter checkerboard) in 13 glaucoma patients (67 ± 6 years), 15 older (63 ± 8 years) and 14 younger adults (27 ± 3 years). PERG and PVEP contrast response functions were fit with a linear and saturating hyperbolic model, respectively. PERG and PVEP magnitude, timing (phase), and model fit parameters (slope, semi-saturation constant) were compared between groups. RESULTS: PERG responses were reduced and delayed in older adults relative to younger adults, and further reduced and delayed in glaucoma patients across all contrasts. PVEP signals were also reduced and delayed in glaucoma patients, relative to age-similar (older) controls. However, despite having reduced PERG magnitudes, older adults did not demonstrate reduced PVEP magnitudes. CONCLUSIONS: Older adults with healthy vision demonstrate reduced magnitude and delayed timing in the PERG that is not reflected in the PVEP. In contrast, glaucoma produces functional deficits in both PERG and PVEP contrast response functions. Our results suggest that glaucomatous effects on contrast processing are not a simple extension of those that arise as part of the aging process.

Department of Optometry & Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.

Full article

Classification:

6.7 Electro-ophthalmodiagnosis (Part of: 6 Clinical examination methods)



Issue 20-2

Change Issue


advertisement

Oculus