advertisement

Topcon

Abstract #80477 Published in IGR 20-3

Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation

Shankaranarayana SM; Ram K; Mitra K; Sivaprakasam M
IEEE journal of biomedical and health informatics 2019; 23: 1417-1426


Glaucoma is a serious ocular disorder for which the screening and diagnosis are carried out by the examination of the optic nerve head (ONH). The color fundus image (CFI) is the most common modality used for ocular screening. In CFI, the central region which is the optic disc and the optic cup region within the disc are examined to determine one of the important cues for glaucoma diagnosis called the optic cup-to-disc ratio (CDR). CDR calculation requires accurate segmentation of optic disc and cup. Another important cue for glaucoma progression is the variation of depth in ONH region. In this paper, we first propose a deep learning framework to estimate depth from a single fundus image. For the case of monocular retinal depth estimation, we are also plagued by the labeled data insufficiency. To overcome this problem we adopt the technique of pretraining the deep network where, instead of using a denoising autoencoder, we propose a new pretraining scheme called pseudo-depth reconstruction, which serves as a proxy task for retinal depth estimation. Empirically, we show pseudo-depth reconstruction to be a better proxy task than denoising. Our results outperform the existing techniques for depth estimation on the INSPIRE dataset. To extend the use of depth map for optic disc and cup segmentation, we propose a novel fully convolutional guided network, where, along with the color fundus image the network uses the depth map as a guide. We propose a convolutional block called multimodal feature extraction block to extract and fuse the features of the color image and the guide image. We extensively evaluate the proposed segmentation scheme on three datasets- ORIGA, RIMONEr3, and DRISHTI-GS. The performance of the method is comparable and in many cases, outperforms the most recent state of the art.

Full article

Classification:

6.9.5 Other (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis)



Issue 20-3

Change Issue


advertisement

Oculus