advertisement
PURPOSE: To assess the normal distribution of intraocular pressure (IOP) and its associations with ocular, medical, and socioeconomic factors in a Russian population. DESIGN: Population-based cross-sectional study. METHODS: The Ural Eye and Medical Study conducted in a rural and urban area in Ufa/Bashkortostan included 5899 (80.5%) participants out of 7328 eligible individuals aged 40+ years. IOP was measured by noncontact tonometry. RESULTS: After exclusion of individuals after glaucoma surgery or with antiglaucomatous therapy, mean IOP was 13.6 ± 3.8 mm Hg (median: 13 mm Hg; range: 3-49 mm Hg; 95% confidence interval [CI]: 8-23 mm Hg). The IOP range within the mean ± 2 standard deviations was 6.0-21.2 mm Hg. In multivariable analysis higher IOP was associated (regression coefficient r: 0.40) with the systemic parameters of female sex (nonstandardized regression coefficient B: 0.44; 95%CI: 0.22, 0.66; standardized regression coefficient beta: 0.06; P < .001), urban region of habitation (B: -0.27; 95% CI: 0.51, 0.03; beta: 0.03; P = .03), Russian ethnicity (B: 0.47; 95% CI: 0.20, 0.74; beta: 0.05; P = .001), higher body mass index (B: 0.06; 95% CI: 0.04, 0.08; beta: 0.08; P < .001), lower physical activity score (B: -0.02; 95% CI: -0.03, -0.002; beta: -0.03; P = .02), higher prevalence of diabetes mellitus (B: 0.42; 95% CI: 0.08, 0.76; beta: 0.03; P = .02), higher systolic blood pressure (B: 0.01; 95% CI: 0.01, 0.02; beta: 0.08; P < .001), fewer days with intake of fruits (B: -0.07; 95% CI: -0.12, -0.01; beta: 0.03; P = .01), lower blood concentration of bilirubin (B: -0.01; 95% CI: -0.02, -0.003; beta: -0.04; P = .008) and urea (B: -0.11; 95% CI: -0.17, -0.04; beta: -0.04; P = .003), worse best-corrected visual acuity (B: 0.64; 95% CI: 0.38, 0.90; beta: 0.13; P < .001), thicker central corneal thickness (B: 0.036; 95% CI: 0.033, 0.039; beta: 0.32; P < .001), higher anterior corneal refractive power (B: 0.11; 95% CI: 0.04, 0.18; beta: 0.05; P = .003), lower anterior chamber depth (B: -0.57; 95% CI: -0.83, -0.30; beta: -0.07; P < .001) (or lower prevalence of cataract surgery [B: -0.78; 95% CI: -1.44, -0.13; beta: -0.03; P = .02]), longer axial length (B: 0.30; 95% CI: 0.18, 0.42; beta: 0.07; P < .001), and higher prevalence of pseudoexfoliation (B: 1.08; 95% CI: 0.52, 1.63; beta: 1.01; P < .001). Measured IOP decreased by 0.36 mm Hg (95% CI: 0.33, 0.39) for each increase in central corneal thickness by 10 μm. CONCLUSIONS: IOP was associated with a multitude of systemic and ocular parameters, the associations of which may be considered in defining the normal range of IOP.
Ufa Eye Research Institute, Ufa, Bashkortostan, Russia.
Full article1.1 Epidemiology (Part of: 1 General aspects)
6.1.3 Factors affecting IOP (Part of: 6 Clinical examination methods > 6.1 Intraocular pressure measurement; factors affecting IOP)