advertisement
PURPOSE: To identify important variables associated with visual field (VF) defects in open-angle glaucoma (OAG) with myopia. MATERIALS AND METHODS: A total of 105 OAG with myopia were enrolled in this cross-sectional study. The disc tilt ratio, disc torsion degree, disc-foveal angle, and area of peripapillary atrophy (PPA) were measured from red-free fundus photographs. Patients underwent Swept-source optical coherence tomography to measure peripapillary retinal nerve fiber layer (RNFL), subfoveal choroidal, and sufoveal scleral thicknesses. Functional evaluation was performed using 24-2 standard automated perimetry. For statistical analyses, logistic regression, artificial neural networks (ANN), and hierarchical cluster analysis were performed. RESULTS: Logistic regression demonstrated peripapillary RNFL thickness as a significant variable for the presence of VF defects, otherwise ANN identified PPA area, peripapillary RNFL thickness, disc-foveal angle, and disc torsion degree as significant clinical variables in OAG with myopia. Two clusters were made after a hierarchical cluster analysis. Cluster 2 showed significantly worse VF damage than cluster 1 (MD = -5.20±5.25 dB for cluster 2 and -1.84±3.02 dB for cluster 1, P < .001). Cluster 2 had significantly greater disc tilt ratio, disc-foveal angle, and PPA area compared with cluster 1 (P < .001, 0.005, and < .001, respectively). CONCLUSIONS: Generally peripapillary RNFL thickness is considered as an important variable associated with visual field defects in glaucoma patients. ANN identified parameters associated with posterior scleral deformations around optic disc induced by myopic change including PPA area, disc torsion degree, and disc-foveal angle as significant clinical variables for visual field damage in OAG with myopia.
Full article
8.1 Myopia (Part of: 8 Refractive errors in relation to glaucoma)
2.14 Optic disc (Part of: 2 Anatomical structures in glaucoma)
2.3 Sclera (Part of: 2 Anatomical structures in glaucoma)