advertisement

Topcon

Abstract #80727 Published in IGR 20-3

Macular Ganglion Cell-Inner Plexiform Layer Loss Precedes Peripapillary Retinal Nerve Fiber Layer Loss in Glaucoma with Lower Intraocular Pressure

Marshall HN; Andrew NH; Andrew NH; Hassall M; Qassim A; Souzeau E; Ridge B; Nguyen T; Fitzgerald J; Awadalla MS; Burdon KP; Healey PR; Agar A; Galanopoulos A; Hewitt AW; Graham SL; Landers J; Casson RJ; Craig JE
Ophthalmology 2019; 126: 1119-1130


PURPOSE: To investigate which clinical measures influence whether an individual demonstrates earliest glaucomatous structural progression on peripapillary retinal nerve fiber layer (pRNFL) or macular ganglion cell-inner plexiform layer (mGCIPL). DESIGN: Prospective, longitudinal cohort study. PARTICIPANTS: Two hundred seventy-one eyes from 207 individuals with statistically significant evidence of glaucomatous progression on OCT Guided Progression Analysis (GPA) software were drawn from a total of 1271 eyes from 686 individuals categorized as glaucoma suspect or having early manifest glaucoma undergoing glaucoma surveillance. METHODS: Individuals demonstrating earliest evidence of longitudinal progression on mGCIPL GPA event analysis were compared with individuals demonstrating evidence of earliest longitudinal progression on pRNFL GPA event analysis. MAIN OUTCOME MEASURES: Correlation of OCT event change analysis with intraocular pressure (IOP), clinical variables, and baseline thickness of the pRNFL and mGCIPL. RESULTS: Intraocular pressure, baseline pRNFL thickness, baseline mGCIPL thickness, and systemic hypertension were associated with location of first progression. Eyes demonstrating earliest longitudinal progression on mGCIPL had significantly lower maximum-recorded pretreatment IOP (mean difference, 3.90 mmHg; 95% confidence interval [CI], 2.37-5.43 mmHg; P < 0.001). The interval between progression on pRNFL and progression on mGCIPL increased by 12.4 months for every 5-mmHg increase in IOP (95% CI, 10.32-15.72 months). Eyes demonstrating earliest longitudinal progression on mGCIPL showed significantly lower baseline average pRNFL thickness than eyes progressing on pRNFL first (mean difference, 7.07 μm; 95% CI, 4.38-9.77 μm; P < 0.001). Eyes progressing first on mGCIPL parameters were 3.03 times more likely to demonstrate a new paracentral field defect than eyes progressing first on pRNFL parameters (odds ratio, 3.03; 95% CI, 1.26-7.28; P = 0.01). CONCLUSIONS: Clinical features, particularly pretreatment IOP, influence whether structural glaucoma progression is detected earlier with mGCIPL or pRNFL imaging. These data support the usefulness of mGCIPL imaging in addition to pRNFL analysis for detection of glaucoma progression, particularly in patients with normal IOP.

Department of Ophthalmology, Flinders University, Bedford Park, Australia.

Full article

Classification:

9.2.4 Normal pressure glaucoma (Part of: 9 Clinical forms of glaucomas > 9.2 Primary open angle glaucomas)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
2.13 Retina and retinal nerve fibre layer (Part of: 2 Anatomical structures in glaucoma)



Issue 20-3

Change Issue


advertisement

Oculus