advertisement
See also comment(s) by Alon Harris & Brent Siesky •
PURPOSE: To investigate, in primary open-angle glaucoma (POAG) and healthy subjects, the pattern and magnitude of diurnal variation in optical coherence tomography angiography (OCTA) retinal vessel density (RVD). DESIGN: Prospective, observational cross-sectional study. PARTICIPANTS: A prospective study was conducted on 20POAG patients and 19 healthy subjects. METHODS: Peripapillary/macular RVD (using swept-source OCTA), intraocular pressure (IOP), and systemic blood pressure (BP) were measured five times a day (8 a.m., 11 a.m., 2 p.m.,5 p.m. and 8 p.m.). The magnitudes and patterns of diurnal changes in RVD, diastolic BP, and mean ocular-perfusion pressure (MOPP) were analyzed and compared between the POAG patients and the healthy subjects. MAIN OUTCOME MEASURES: The patterns and magnitudes of diurnal RVD change in OCTA. RESULTS: Intra-visit repeatability (0.755-0.943) and inter-visit reproducibility (0.843-0.986) for the RVD measurements showed excellent reliability. In the POAG patients, the magnitude of diurnal change in peripapillary RVD (9.71±7.04%) and macular RVD (7.22±4.73%) were significantly greater than that in the healthy group (5.73±3.85%, P = 0.013 and 5.51±3.45%, P = 0.042, respectively). The magnitudes of diurnal variations of IOP and MOPP in the POAG group likewise were greater than those in the healthy group (P = 0.003 and 0.039). As for the patterns of diurnal RVD change, interestingly, at 8 p.m., the macular RVD of the healthy group increased to the highest level (44.12±2.95%) while that of the POAG group decreased to the lowest level (40.41±2.54%). CONCLUSIONS: In POAG eyes, diurnal change of IOP, MOPP and RVD was significantly greater than in the healthy eyes. These findings suggest that diurnal RVD changes might reflect the hemodynamic variation of POAG.
Full article
6.11 Bloodflow measurements (Part of: 6 Clinical examination methods)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)