advertisement

Topcon

Abstract #81314 Published in IGR 20-3

Menopause exacerbates visual dysfunction in experimental glaucoma

Feola AJ; Fu J; Allen R; Yang V; Campbell IC; Ottensmeyer A; Ethier CR; Pardue M
Experimental Eye Research 2019; 186: 107706


Glaucoma is the leading cause of irreversible blindness worldwide. Recently, estrogen deficiencies caused by early menopause, alterations in estrogen signaling via mutations in estrogen receptors, and polymorphisms along estrogen metabolic pathways have all been linked to an increased risk of developing glaucoma. Here, we examined how menopause and age impact visual function and retinal structure in an experimental model of glaucoma. Young (3-4 months) and aged (9-10 months) female Brown Norway rats were divided into pre- and post-menopausal cohorts by surgically inducing menopause via ovariectomy (OVX). After six weeks, ocular hypertension (OHT) was induced unilaterally for a period of eight weeks. Four cohorts were successfully followed to eight weeks: young sham (n = 8), young OVX (n = 9), aged sham (n = 10), and aged OVX (n = 11) animals. Intraocular pressure (IOP) was monitored weekly in all groups. Prior to inducing OHT (baseline) and at four and eight weeks after inducing OHT, we assessed visual acuity via the optomotor response (OMR) and retinal structure using optical coherence tomography (OCT). OHT decreased the OMR in all cohorts. We found that spatial frequency thresholds decreased by 54% in OVX animals after OHT compared to sham animals after OHT, regardless of age (p < 0.001). We also found thinning of the retinal nerve fiber layer (RNFL) and loss of total retinal thickness after induction of OHT. Aged animals had more thinning of the RNFL and loss of total retinal thickness compared to young animals (p < 0.001). Overall, OHT caused significant changes in visual function and retinal structure. Observing that OVX in young and aged animals further decreased spatial frequency thresholds after OHT suggests that an estrogen deficiency may intensify visual impairment after OHT.

Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, United States; Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States. Electronic address: andrew.feola@bme.gatech.edu.

Full article

Classification:

5.1 Rodent (Part of: 5 Experimental glaucoma; animal models)
9.4.15 Glaucoma in relation to systemic disease (Part of: 9 Clinical forms of glaucomas > 9.4 Glaucomas associated with other ocular and systemic disorders)
3.9 Pathophysiology (Part of: 3 Laboratory methods)



Issue 20-3

Change Issue


advertisement

WGA Rescources