advertisement
The ocular motor plant, consisting of the globe, extraocular muscles (EOMs), and connective tissue suspension, constitutes an intricate and non-linear actuator of eye movements. The pulley system of the rectus EOMs constitutes a non-linear inner gimbal actuated by the orbital layers of these EOMs that renders the sequence of ocular rotations effectively commutative to the central controller, and can be rotated by the outer gimbal driven by the oblique EOMs. Optic nerve (ON) length is insufficient to permit large angle adduction without tethering by the ON and sheath, creating at and beyond this threshold a large additional load on the medial rectus muscle. Finite element modeling suggests that adduction may eventually cause repetitive strain injury to the ON and glaucomatous optic nerve damage.
Full article
1.3 Pathogenesis (Part of: 1 General aspects)
2.15 Optic nerve (Part of: 2 Anatomical structures in glaucoma)