advertisement

Topcon

Abstract #81361 Published in IGR 20-3

Rosiglitazone Treatment Prevents Postoperative Fibrosis in a Rabbit Model of Glaucoma Filtration Surgery

Zhang F; Liu K; Cao M; Qu J; Zhou D; Pan Z; Duan X; Zhou Y
Investigative Ophthalmology and Visual Science 2019; 60: 2743-2752


PURPOSE: To evaluate the potential antifibrotic effect of rosiglitazone (RSG), a peroxisome proliferator-activated receptor γ (PPARγ)-selective agonist, on subconjunctival fibrosis in a rabbit model of glaucoma filtration surgery (GFS) in vivo, and to investigate the underlying mechanisms in human Tenon's fibroblasts (HTFs) in vitro. METHODS: GFS were performed on adult male New Zealand white rabbits with chronic ocular hypertension previously established by injections of 2% methylcellulose into the anterior chamber. Rabbits were treated by RSG, mitomycin C (MMC) or 5-fluorouracil (5-FU) intraoperatively. The morphology of filtering blebs was evaluated by Indiana Bleb Appearance Grading Scale (IBAGS) scoring. Expression of profibrotic genes was determined by quantitative PCR, immunoblot, and/or histochemical analysis. In vitro studies were performed in a transforming growth factor (TGF)-β1-based cell model of fibrosis. Autophagy was evaluated by the formation of autophagosomes and autolysosomes using fluorescent and transmission electron microscopy and by expression of key mediators in the autophagic pathway. RESULTS: RSG treatment ameliorated a rebound intraocular pressure (IOP) elevation, prolonged the survival of filtering blebs, and attenuated subconjunctival fibrosis in rabbits following trabeculectomy. Pretreatment of HTFs with RSG inhibited TGF-β1-induced expression of profibrotic genes encoding specificity protein 1, connective tissue growth factor, and α smooth muscle actin. RSG augmented TGF-β1-induced autophagy in HTFs via a beclin1/VPS34-dependent mechanism. Augmentation of autophagy is associated with inhibition of TGF-β1-induced profibrotic gene expression by RSG. CONCLUSIONS: RSG treatment prevents subconjunctival fibrosis after GFS by inhibition of profibrotic gene expression through a mechanism involved in promoting autophagy in local fibroblasts. RSG represents a novel antifibrotic drug with the potential to improve the success rate of GFS.

Full article

Classification:

5.3 Other (Part of: 5 Experimental glaucoma; animal models)
12.8.10 Woundhealing antifibrosis (Part of: 12 Surgical treatment > 12.8 Filtering surgery)



Issue 20-3

Change Issue


advertisement

Oculus