advertisement

Topcon

Abstract #82202 Published in IGR 20-4

Towards A Microbead Occlusion Model of Glaucoma for a Non-Human Primate

Lambert WS; Carlson BJ; Ghose P; Vest VD; Yao V; Calkins DJ
Scientific reports 2019; 9: 11572


Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease causes vision loss through the degeneration of retinal ganglion cell neurons and their axons in the optic nerve. Using an inducible model of glaucoma, we elevated IOP in the squirrel monkey (Saimiri boliviensis) using intracameral injection of 35 μm polystyrene microbeads and measured common pathogenic outcomes in the optic projection. A 42% elevation in IOP over 28 weeks reduced anterograde transport of fluorescently-labeled cholera toxin beta from retina to the lateral geniculate nucleus (60% decrease), and to the superior colliculus (49% decrease). Pressure also reduced survival of ganglion cellaxons in the optic nerve by 22%. The same elevation caused upregulation of proteins associated with glaucomatous neurodegeneration in the retina and optic nerve, including complement 1q, interleukin 6, and brain-derived neurotrophic factor. That axon degeneration in the nerve lagged deficits in anterograde transport is consistent with progression in rodent models, while the observed protein changes also occur in tissue from human glaucoma patients. Thus, microbead occlusion in a non-human primate with a visual system similar to our own represents an attractive model to investigate neurodegenerative mechanisms and therapeutic interventions for glaucoma.

The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-0654, USA.

Full article

Classification:

5.2 Primates (Part of: 5 Experimental glaucoma; animal models)



Issue 20-4

Change Issue


advertisement

Oculus