advertisement
PURPOSE: To evaluate the inflammatory cytokine, growth factors, extracellular matrix (ECM) remodeling genes, profibrotic and antifibrotic molecules in patients undergoing glaucoma filtration surgery (GFS). Additionally, the effect of preoperative antiglaucoma medications (AGMs) and postoperative bleb status were related to these parameters. METHODS: Tenon's tissue and aqueous humour (AH) were collected from 207 patients undergoing GFS with primary open-angle glaucoma (POAG) (n = 77), primary angle-closure glaucoma (PACG) (n = 62), and cataract controls (n = 68). Monocyte chemoattractant protein-1 (MCP-1), connective tissue growth factor (CTGF), transforming growth factor β1/2 (TGF-β1/2), lysyl oxidase (LOX), lysyl oxidase L2 (LOXL2), elastin (ELN), collagen type 1 α 1 (COL1A1), secreted protein acidic and rich in cysteine (SPARC), α-smooth muscle actin (α-SMA), and decorin (DCN) were determined in tenon's tissue by real-time PCR and in AH using ELISA. RESULTS: A significant increase was observed in the transcripts of MCP-1, TGF-β2, and SPARC in POAG and PACG (P < 0.05); CTGF, TGF-β1, LOX, LOXL2, ELN, COL1A1, and α-SMA in PACG (P < 0.05) compared with control. DCN transcript was significantly decreased in POAG and PACG (P < 0.05) compared with control. The protein levels of CTGF, TGF-β1/β2, ELN, SPARC, and LOXL2 was significantly elevated in POAG and PACG (P < 0.05); DCN was decreased (P < 0.05) compared with control. These parameters showed significant association with duration of preoperative AGMs and postoperative bleb status. CONCLUSIONS: This study demonstrates increased expression of growth factors and ECM molecules, both at protein and transcript levels in GFS patients. A decreased DCN in AH seems striking, and if restored might have a therapeutic role in minimizing postoperative scarring to improve GFS outcome.
Full article
3.6 Cellular biology (Part of: 3 Laboratory methods)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)
3.4.2 Gene studies (Part of: 3 Laboratory methods > 3.4 Molecular genetics)