advertisement

Topcon

Abstract #82875 Published in IGR 20-4

Glaucoma Assessment from OCT images using Capsule Network

Gaddipati DJ; Desai A; Sivaswamy J; Vermeer KA
Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2019; 2019: 5581-5584


Optical coherence tomographic (OCT) images provide valuable information for understanding the changes occurring in the retina due to glaucoma, specifically, related to the retinal nerve fiber layer and the optic nerve head. In this paper, we propose a deep learning approach using Capsule network for glaucoma classification, which directly operates on 3D OCT volumes. The network is trained only on labelled volumes and does not attempt any region/structure segmentation. The proposed network was assessed on 50 volumes and found to achieve 0.97 for the area under the ROC curve (AUC). This is considerably higher than the existing approaches which are majorly based on machine learning or rely on segmentation of the required structures from OCT. Our network also outperforms 3D convolutional neural networks despite the fewer network parameters and fewer epochs needed for training.

Full article

Classification:

6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
6.9.5 Other (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis)
6.30 Other (Part of: 6 Clinical examination methods)



Issue 20-4

Change Issue


advertisement

Oculus