advertisement

Topcon

Abstract #84134 Published in IGR 21-1

Salidroside mitigates hydrogen peroxide-induced injury by enhancement of microRNA-27a in human trabecular meshwork cells

Zhao J; Du X; Wang M; Yang P; Zhang J
Artificial cells, nanomedicine, and biotechnology 2019; 47: 1758-1765


Salidroside (Sal) exerted widely pharmacological effects in multitudinous diseases had been certified. The actual study clarified the protective activity of Sal in HO-injured human trabecular meshwork (HTM) cells. HTM cells were disposed with HO to construct an oxidative damage model in vitro. Then, Sal was utilized to administrate HTM cells, and cell viability, apoptosis, apoptosis-interrelated proteins and ROS production were appraised using CCK-8, flow cytometry, western blot and DCFH-DA staining. MiR-27a inhibitor and its control were transfected into HTM cells, and the influences of miR-27a inhibition in HTM cells stimulated with HO and Sal were detected. PI3K/AKT and Wnt/β-catenin pathways were ultimately investigated to uncover the underlying mechanism. We found that HO evoked HTM cells oxidative damage, as evidenced by repressing cell viability, inducing apoptosis, activating cleaved-caspase-3/-9 expression and increasing ROS production. Sal significantly lightened HO-evoked oxidative damage in HTM cells. Additionally, miR-27a was up-regulated by Sal, and miR-27a suppression significantly reversed the protective effect of Sal on HO-injured HTM cells. Finally, Sal activated PI3K/AKT and Wnt/β-catenin pathways through enhancement of miR-27a in HO-injured HTM cells. In conclusion, these discoveries suggested that Sal could protect HTM cells against HO-evoked oxidative damage by activating PI3K/AKT and Wnt/β-catenin pathways through enhancement of miR-27a. Highlights HO evokes HTM cells oxidative damage; Sal relieves HO-induced oxidative damage in HTM cells; Sal enhances miR-27a expression in HO-injured HTM cells; Repressed miR-27a reverses the protective impacts of Sal on HO-injured HTM cells; Sal activates PI3K/AKT and Wnt/β-catenin pathways by increasing miR-27a.

a Department of Ophthalmology , Linyi People's Hospital , Linyi , China.

Full article

Classification:

3.8 Pharmacology (Part of: 3 Laboratory methods)
3.6 Cellular biology (Part of: 3 Laboratory methods)
2.6.2.1 Trabecular meshwork (Part of: 2 Anatomical structures in glaucoma > 2.6 Aqueous humor dynamics > 2.6.2 Outflow)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)



Issue 21-1

Change Issue


advertisement

Oculus