advertisement
Glaucoma, progressive optic neuropathy, is the first cause of blindness in Japan. Blindness in this disease is induced by damages or degeneration of retinal ganglion cells (RGCs), retinal neurons transmit visual information to brain. An elevated intraocular pressure (IOP) is widely recognized as one of the most important risk factors and that IOP directly damages RGCs by mechanical stress, however, accumulating evidences have shown that a majority of Japanese patients for primary open angle glaucoma shows normal level of IOP. Thus, new target for glaucoma pathology is emerged. In this issue, we introduce potential roles of glial cells for pathogenesis of glaucoma. In the CNS, reactive gliosis has been recognized in a variety of neurodegenerative diseases. Such glial activation is also found in retinae of human glaucoma patients and animal models. Importantly, glial activation precedes RGS degeneration, indicating the possibility that reactive glial cells actively contribute to pathogenesis of glaucoma. In this issue, we will focus on macroglial cells such as Muller cells and astrocytes, and discuss their roles in glaucoma.
Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi.
Full article3.9 Pathophysiology (Part of: 3 Laboratory methods)
11.8 Neuroprotection (Part of: 11 Medical treatment)
2.13 Retina and retinal nerve fibre layer (Part of: 2 Anatomical structures in glaucoma)
3.6 Cellular biology (Part of: 3 Laboratory methods)