advertisement

Topcon

Abstract #86470 Published in IGR 21-2

Time course of bilateral microglial activation in a mouse model of laser-induced glaucoma

Ramírez AI; de Hoz R; Fernández-Albarral JA; Salobrar-Garcia E; Rojas B; Valiente-Soriano FJ; Avilés-Trigueros M; Villegas-Pérez MP; Vidal-Sanz M; Triviño A; Ramírez JM; Salazar JJ
Scientific reports 2020; 10: 4890


Microglial activation is associated with glaucoma. In the model of unilateral laser-induced ocular hypertension (OHT), the time point at which the inflammatory process peaks remains unknown. Different time points (1, 3, 5, 8, and 15 d) were compared to analyze signs of microglial activation both in OHT and contralateral eyes. In both eyes, microglial activation was detected in all retinal layers at all time points analyzed, including: i) increase in the cell number in the outer segment photoreceptor layer and plexiform layers (only in OHT eyes) from 3 d onward; ii) increase in soma size from 1 d onward; iii) retraction of the processes from 1 d in OHT eyes and 3 d in contralateral eyes; iv) increase in the area of the retina occupied by Iba-1+ cells in the nerve fiber layer/ganglion cell layer from 1 d onward; v) increase in the number of vertical processes from 1 d in contralateral eyes and 3 d in OHT eyes. In OHT eyes at 24 h and 15 d, most Iba-1+ cells were P2RY12+ and were down-regulated at 3 and 5 d. In both eyes, microglial activation was stronger at 3 and 5 d (inflammation peaked in this model). These time points could be useful to identify factors implicated in the inflammatory process.

Full article

Classification:

3.6 Cellular biology (Part of: 3 Laboratory methods)
5.1 Rodent (Part of: 5 Experimental glaucoma; animal models)



Issue 21-2

Change Issue


advertisement

Oculus