advertisement
We conducted a study to evaluate the algorithms based on deep learning to automatically diagnosis of GON from digital fundus images. A systematic articles search was conducted in PubMed, EMBASE, Google Scholar for the study that investigated the performance of deep learning algorithms for the detection of GON. A total of eight studies were included in this study, of which 5 studies were used to conduct our meta-analysis. The pooled AUROC for detecting GON was 0.98. However, the sensitivity and specificity of deep learning to detect GON were 0.90 (95% CI: 0.90-0.91), and 0.94 (95%CI: 0.93-0.94), respectively.
Full article
6.30 Other (Part of: 6 Clinical examination methods)
6.8.2 Posterior segment (Part of: 6 Clinical examination methods > 6.8 Photography)
2.14 Optic disc (Part of: 2 Anatomical structures in glaucoma)