advertisement

Topcon

Abstract #90199 Published in IGR 21-3

The optic nerve lamina region is a neural progenitor cell niche

Bernstein SL; Guo Y; Kerr C; Fawcett RJ; Stern JH; Temple S; Mehrabian Z
Proceedings of the National Academy of Sciences of the United States of America 2020; 117: 19287-19298


Retinal ganglion cell axons forming the optic nerve (ON) emerge unmyelinated from the eye and become myelinated after passage through the optic nerve lamina region (ONLR), a transitional area containing a vascular plexus. The ONLR has a number of unusual characteristics: it inhibits intraocular myelination, enables postnatal ON myelination of growing axons, modulates the fluid pressure differences between eye and brain, and is the primary lesion site in the age-related disease open angle glaucoma (OAG). We demonstrate that the human and rodent ONLR possesses a mitotically active, age-depletable neural progenitor cell (NPC) niche, with unique characteristics and culture requirements. These NPCs generate both forms of macroglia: astrocytes and oligodendrocytes, and can form neurospheres in culture. Using reporter mice with SOX2-driven, inducible gene expression, we show that ONLR-NPCs generate macroglial cells for the anterior ON. Early ONLR-NPC loss results in regional dysfunction and hypomyelination. In adulthood, ONLR-NPCs may enable glial replacement and remyelination. ONLR-NPC depletion may help explain why ON diseases such as OAG progress in severity during aging.

Full article

Classification:

2.17 Stem cells (Part of: 2 Anatomical structures in glaucoma)
2.14 Optic disc (Part of: 2 Anatomical structures in glaucoma)
2.3 Sclera (Part of: 2 Anatomical structures in glaucoma)



Issue 21-3

Change Issue


advertisement

Topcon