advertisement

Topcon

Abstract #90271 Published in IGR 21-3

Polymorphism analysis of miR182 and CDKN2B genes in Greek patients with primary open angle glaucoma

Moschos MM; Dettoraki M; Karekla A; Lamprinakis I; Damaskos C; Gouliopoulos N; Tibilis M; Gazouli M
PLoS ONE 2020; 15: e0233692


Glaucoma is a progressive optic neuropathy resulting from retinal ganglion cells death; it represents one of the leading causes of irreversible blindness worldwide. Although, primary open angle glaucoma (POAG) is the most common type of the disease, the pathogenesis of POAG and the genetic factors contributing to disease development remain poorly understood. The aim of this study was to investigate whether the polymorphisms rs76481776 in miR182 gene and rs3217992 in cyclin-dependent kinase inhibitor-2B (CDKN2B) gene are risk factors for POAG in a series of patients of Greek origin. A case-control study was conducted including 120 patients with POAG and 113 unaffected healthy controls of Greek origin, surveyed for polymorphisms with potential correlation to POAG. DNA from each individual was tested for the miR182 rs76481776 and CDKN2B rs3217992 polymorphisms. Regarding the miR182 rs76481776 polymorphism, the T allele occurred with significantly higher frequency in POAG patients compared to controls (OR: 2.62, 95% CI: 1.56-4.39; p = 0.0002). The CDKN2B rs3217992 A allele frequency was found significantly increased in POAG patients compared to healthy individuals (OR: 1.72, 95% CI: 1.18-2.49; p = 0.005). Therefore, both rs76481776 polymorphism in miR182 gene and rs3217992 polymorphism in CDKN2B gene seem to be associated with the development of POAG in a Greek population. The carriers of the T allele of rs76481776 in miR182 and the carriers of the A allele of rs3217992 in CDKN2B have an increased risk of developing POAG.

1st Department of Ophthalmology, "G. Gennimatas" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.

Full article

Classification:

3.4.2 Gene studies (Part of: 3 Laboratory methods > 3.4 Molecular genetics)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)



Issue 21-3

Change Issue


advertisement

Oculus