advertisement

Topcon

Abstract #90274 Published in IGR 21-3

Global phosphotyrosinylated protein profile of cell-matrix adhesion complexes of trabecular meshwork cells

Maddala R; Rao PV
American Journal of Physiology and Cell Physiology 2020; 319: C288-C299


Dysregulation of the mechanical properties and cell adhesive interactions of trabecular meshwork (TM) are known to impair aqueous humor drainage and elevate intraocular pressure in glaucoma patients. The identity of regulatory mechanisms underlying TM mechanotransduction, however, remains elusive. Here we analyzed the phosphotyrosine proteome of human TM cell-extracellular matrix (ECM) adhesion complexes, which play a key role in sensing and transducing extracellular chemical and mechanical cues into intracellular activities, using a two-level affinity pull-down (phosphotyrosine antibody and titanium dioxide beads) method and mass spectrometry. This analysis identified ~1,000 tyrosine-phosphorylated proteins of TM cell-ECM adhesion complexes. Many consensus adhesome proteins were found to be tyrosine phosphorylated. Interestingly, several of the phosphotyrosinylated proteins found in TM cell-ECM adhesion complexes are known to be required for podocyte glomerular filtration, indicating the existence of molecular parallels that are likely relevant to the shared fluid barrier and filtration functions of the two mechanosensitive cell types.

Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina.

Full article

Classification:

3.6 Cellular biology (Part of: 3 Laboratory methods)
2.5.1 Trabecular meshwork (Part of: 2 Anatomical structures in glaucoma > 2.5 Meshwork)
3.12 Proteomics (Part of: 3 Laboratory methods)



Issue 21-3

Change Issue


advertisement

Topcon