advertisement
Analysis of the reactive oxygen species (ROS)-detoxifying biomarkers may elucidate the mitochondrial dysfunction in glaucoma pathogenesis. Therefore, we purposed to investigate the effects of ROS-detoxifying molecules including Silent Information Regulator T1 (SIRT1) and Forkhead Box O 1 (FOXO1) and 3a (FOXO3a) transcription factors in patients with glaucoma. Our analyses included 20 eyes from patients with primary open-angle glaucoma (POAG) and 20 eyes from patients with pseudoexfoliation glaucoma (PXG) who were scheduled for trabeculectomy. After extraction of total RNA from trabecular meshwork tissue, we compared the levels of SIRT1, FOXO1and FOXO3a genes in the oxidative pathway with the level of glyceraldehyde-3 phosphate dehydrogenase (GAPDH), the reference gene, using real-time polymerase chain reaction. Relative gene expression was calculated using the threshold cycle (2) method. We observed similarly reduced expression levels of SIRT1, FOXO1, and FOXO3a genes versus GAPDH among patient groups (p = 0.40; p = 0.56; p = 0.35, respectively). This is the first study to identify the role of SIRT1 and FOXOs in human TM with glaucoma. Relative expression levels of SIRT1, FOXO1, and FOXO3a genes versus a control gene (GAPDH) were decreased in POAG and PXG groups. Our results show that SIRT1and FOXOs (1-3a) deserve special attention in the pathogenesis of glaucoma.
Department of Ophthalmology, Kağızman State Hospital, Kars, Turkey. deryayaman89@hotmail.com.
Full article3.4.2 Gene studies (Part of: 3 Laboratory methods > 3.4 Molecular genetics)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)
3.6 Cellular biology (Part of: 3 Laboratory methods)
2.5.1 Trabecular meshwork (Part of: 2 Anatomical structures in glaucoma > 2.5 Meshwork)