advertisement
Inhibition of fibrosis is indispensable for maintaining filtering blebs after glaucoma filtration surgery (GFS). The purpose of this study was to investigate the ability of a pluripotent epigenetic regulator OBP-801 (OBP) to ameliorate extracellular matrix formation in a rabbit model of GFS. Rabbits that underwent GFS were treated with OBP. The gene expression profiles and intraocular pressure (IOP) were monitored until 30 postoperative days. The bleb tissues were evaluated for tissue fibrosis at 30 postoperative days. In in vitro models, OBP interfered the functions of diverse genes during the wound-healing process. In in vivo GFS models, the expressions of TGF-β3, MMP-2, TIMP-2 and 3, LOX, COL1A and SERPINH1 were significantly inhibited at 30 postoperative days in the OBP group compared with those in the vehicle control group. OBP treatment involving subconjunctival injection or eye drops showed no adverse effects, and reduced levels of α-SMA and collagen deposition at the surgical wound site. OBP maintained the long-lived bleb without scar formation, and IOP was lower at 30 postoperative days compared with the vehicle control group. These findings suggest that OBP is an effective and useful candidate low-molecular-weight agent for improving wound healing and surgical outcomes in a rabbit model of GFS.
Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-8566, Japan.
Full article3.4.2 Gene studies (Part of: 3 Laboratory methods > 3.4 Molecular genetics)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)
3.6 Cellular biology (Part of: 3 Laboratory methods)
5.3 Other (Part of: 5 Experimental glaucoma; animal models)