advertisement
The future of intraocular lens (IOL) technology has already begun with a number of recent innovations. The postoperative change of refractive power will lead to a customized fine-tuning that provides patients with the individual vision they expect and with as much spectacle independence as possible. The latest-generation (2.0) Light-Adjustable Lens (RxSight) was recently introduced into clinical practice, with the first results being very encouraging. Other methods of altering the power of an already implanted IOL are under development. The same can be said about the correction of presbyopia, the so-called last frontier in refractive surgery. Extended depth-of-focus IOLs have been introduced, as has the technology of the pinhole IOL. The latter has therapeutic potential beyond the refractive aspect and has already proven helpful in cases of iris defects and irregular corneas. Several technologies are currently being tested to achieve-finally-an accommodative IOL. One such concept uses the (remaining) strength of the ciliary muscle, whereas another is triggered by the pupil reaction when shifting focus from far to near. Not an IOL itself, but rather a high-tech innovation that so far has mostly been implanted during cataract surgery, is a microelectronic sensor that measures habitual intraocular pressure (IOP) at any given time and promises to revolutionize the management of glaucoma patients. The last generation of this device (Eyemate; Implandata Opthalmics Products GmbH) is implanted during small-incision cataract surgery; the latest development is an even smaller sensor that will be inserted suprachoroidally before, in the near future, such a device will be part of a capsular ring. These IOP sensors are a prime example that IOL technology will continue to be a driving force in ophthalmology, with a positive impact far beyond cataract surgery.
Institute for Vision Science, Bochum, Germany. Electronic address: burkhard.dick@kk-bochum.de.
Full article6.1.1 Devices, techniques (Part of: 6 Clinical examination methods > 6.1 Intraocular pressure measurement; factors affecting IOP)