advertisement
PURPOSE: To compare onset times of glaucoma progression among different glaucoma tests: disc photography (DP), visual field (VF) testing, 2-dimensional (2D) retinal nerve fiber layer (RNFL) thickness, and 3-dimensional (3D) spectral-domain (SD) OCT neuroretinal rim measurements. DESIGN: Prospective, longitudinal cohort study. PARTICIPANTS: One hundred twenty-four eyes of 124 patients with open-angle glaucoma. METHODS: Over a 5-year period, 124 patients with open-angle glaucoma underwent yearly DP, VF testing, SD OCT RNFL thickness scans, and optic nerve volume scans (Spectralis; Heidelberg Engineering), all performed on the same day. From high-density optic nerve volume scans, custom-built software calculated the minimum distance band (MDB) thickness, a 3D neuroretinal rim parameter. Patients were classified as glaucoma progressors or nonglaucoma progressors using event-based analysis. Progression by DP and VF testing occurred when 3 masked glaucoma specialists unanimously concurred. Progression by RNFL and MDB thickness occurred if change of more than test-retest variability was observed. Kaplan-Meier curves were constructed to analyze time-to-progression data. Kappa Coefficients were used to measure agreement of progressing eyes among methods. MAIN OUTCOME MEASURES: Time to glaucoma progression among all 4 methods. RESULTS: Global MDB thickness detected glaucoma progression in the highest percentage of eyes (52.4%) compared with DP (16.1%; P < 0.001) and global RNFL thickness (15.3%; P < 0.001). Global MDB thickness detected glaucoma progression earlier than either DP (23 months vs. 44 months; P < 0.001) or global RNFL thickness (23 months vs. 33 months; P < 0.001). Among MDB progressing eyes, 46.2% were confirmed simultaneously or later by other conventional methods. Agreement of glaucoma-progressing eyes for all 4 methods in paired fashion were slight to fair (κ = 0.095-0.300). CONCLUSIONS: High-density 3D SD OCT neuroretinal rim measurements detected glaucoma progression approximately 1 to 2 years earlier compared with current clinically available structural tests (i.e., DP and 2D RNFL thickness measurements).
Department of Ophthalmology, Glaucoma Service, Massachusetts Eye and Ear, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Glaucoma Research Unit, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
Full article6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
6.20 Progression (Part of: 6 Clinical examination methods)