advertisement

Topcon

Abstract #92677 Published in IGR 22-1

Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT

Christopher M; Bowd C; Proudfoot JA; Belghith A; Goldbaum MH; Rezapour J; Fazio MA; Girkin CA; De Moraes G; Liebmann JM; Weinreb RN; Zangwill LM
Ophthalmology 2021; 0:


PURPOSE: To develop deep learning (DL) systems estimating visual function from macula-centered spectral-domain (SD) OCT images. DESIGN: Evaluation of a diagnostic technology. PARTICIPANTS: A total of 2408 10-2 visual field (VF) SD OCT pairs and 2999 24-2 VF SD OCT pairs collected from 645 healthy and glaucoma subjects (1222 eyes). METHODS: Deep learning models were trained on thickness maps from Spectralis macula SD OCT to estimate 10-2 and 24-2 VF mean deviation (MD) and pattern standard deviation (PSD). Individual and combined DL models were trained using thickness data from 6 layers (retinal nerve fiber layer [RNFL], ganglion cell layer [GCL], inner plexiform layer [IPL], ganglion cell-IPL [GCIPL], ganglion cell complex [GCC] and retina). Linear regression of mean layer thicknesses were used for comparison. MAIN OUTCOME MEASURES: Deep learning models were evaluated using R and mean absolute error (MAE) compared with 10-2 and 24-2 VF measurements. RESULTS: Combined DL models estimating 10-2 achieved R of 0.82 (95% confidence interval [CI], 0.68-0.89) for MD and 0.69 (95% CI, 0.55-0.81) for PSD and MAEs of 1.9 dB (95% CI, 1.6-2.4 dB) for MD and 1.5 dB (95% CI, 1.2-1.9 dB) for PSD. This was significantly better than mean thickness estimates for 10-2 MD (0.61 [95% CI, 0.47-0.71] and 3.0 dB [95% CI, 2.5-3.5 dB]) and 10-2 PSD (0.46 [95% CI, 0.31-0.60] and 2.3 dB [95% CI, 1.8-2.7 dB]). Combined DL models estimating 24-2 achieved R of 0.79 (95% CI, 0.72-0.84) for MD and 0.68 (95% CI, 0.53-0.79) for PSD and MAEs of 2.1 dB (95% CI, 1.8-2.5 dB) for MD and 1.5 dB (95% CI, 1.3-1.9 dB) for PSD. This was significantly better than mean thickness estimates for 24-2 MD (0.41 [95% CI, 0.26-0.57] and 3.4 dB [95% CI, 2.7-4.5 dB]) and 24-2 PSD (0.38 [95% CI, 0.20-0.57] and 2.4 dB [95% CI, 2.0-2.8 dB]). The GCIPL (R = 0.79) and GCC (R = 0.75) had the highest performance estimating 10-2 and 24-2 MD, respectively. CONCLUSIONS: Deep learning models improved estimates of functional loss from SD OCT imaging. Accurate estimates can help clinicians to individualize VF testing to patients.

Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, California.

Full article

Classification:

6.6.2 Automated (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
6.9.5 Other (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis)
6.30 Other (Part of: 6 Clinical examination methods)



Issue 22-1

Change Issue


advertisement

Topcon