advertisement

Topcon

Abstract #94336 Published in IGR 22-2

Macular Optical Coherence Tomography Imaging in Glaucoma

Kamalipour A; Moghimi S
Journal of ophthalmic & vision research 2021; 16: 478-489


The advent of spectral-domain optical coherence tomography has played a transformative role in posterior segment imaging of the eye. Traditionally, images of the optic nerve head and the peripapillary area have been used to evaluate the structural changes associated with glaucoma. Recently, there is growing evidence in the literature supporting the use of macular spectral-domain optical coherence tomography as a complementary tool for clinical evaluation and research purposes in glaucoma. Containing more than 50% of retinal ganglion cells in a multilayered pattern, macula is shown to be affected even at the earliest stages of glaucomatous structural damage. Risk assessment for glaucoma progression, earlier detection of glaucomatous structural damage, monitoring of glaucoma especially in advanced cases, and glaucoma evaluation in certain ocular conditions including eyes with high myopia, positive history of disc hemorrhage, and certain optic disc phenotypes are specific domains where macular imaging yields complementary information compared to optic nerve head and peripapillary evaluation using optical coherence tomography. Moreover, the development of artificial intelligence models in data analysis has enabled a tremendous opportunity to create an integrated representation of structural and functional alterations observed in glaucoma. In this study, we aimed at providing a brief review of the main clinical applications and future potential utility of macular spectral-domain optical coherence tomography in glaucoma.

Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States.

Full article

Classification:

6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
2.13 Retina and retinal nerve fibre layer (Part of: 2 Anatomical structures in glaucoma)



Issue 22-2

Change Issue


advertisement

Topcon