advertisement
See also comment(s) by Sarah Zhou & Benjamin Xu •
PURPOSE: To evaluate the performance of swept source optical coherence tomography (SS-OCT) to detect gonioscopic angle closure using different classification algorithms. METHODS: This was a cross-sectional study of 2028 subjects without ophthalmic symptoms recruited from a community-based clinic. All subjects underwent gonioscopy and SS-OCT (Casia, Tomey Corporation, Nagoya, Japan) under dark room conditions. For each eye, 8 out of 128 frames (22.5° interval) were selected to measure anterior chamber parameters namely anterior chamber width, depth, area and volume (ACW, ACD, ACA, and ACV), lens vault (LV), iris curvature (IC), iris thickness (IT) from 750 µm and 2000 µm from the scleral spur, iris area and iris volume. Five diagnostic algorithms-stepwise logistic regression, random forest, multivariate adaptive regression splines, recursive partitioning and Naïve Bayes were evaluated for detection of gonioscopic angle closure (defined as ≥2 closed quadrants). The performance of the horizontal frame was compared with that of other meridians. RESULTS: Data from 1988 subjects, including 143 (7.2%) with gonioscopic angle closure, were available for analysis. They were divided into two groups: training (1391, 70%) and validation (597, 30%). The best algorithm for detecting gonioscopic angle closure was stepwise logistic regression with an area under the curve of 0.91 (95% CI 0.88 to 0.93) using all parameters, and 0.88 (95% CI 0.82 to 0.93) using only ACA, LV and IC of the horizontal meridian scan. CONCLUSIONS: A stepwise logistic regression model incorporating SS-OCT measurements has a high diagnostic ability to detect gonioscopic angle closure.
Full article
9.3.5 Primary angle closure (Part of: 9 Clinical forms of glaucomas > 9.3 Primary angle closure glaucomas)
6.9.2.1 Anterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
6.9.5 Other (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis)
15 Miscellaneous