advertisement

Topcon

Abstract #96121 Published in IGR 22-3

Deep learning image analysis of optical coherence tomography angiography measured vessel density improves classification of healthy and glaucoma eyes

Bowd C; Belghith A; Zangwill LM; Christopher M; Goldbaum MH; Fan R; Rezapour J; Moghimi S; Kamalipour A; Hou H; Hou H; Hou H; Weinreb RN
American Journal of Ophthalmology 2022; 236: 298-308


PURPOSE: To compare convolutional neural network (CNN) analysis of en face vessel density images to gradient boosting classifier (GBC) analysis of instrument provided, feature-based optical coherence tomography angiography (OCTA) vessel density measurements and OCT RNFL thickness measurements for classifying healthy and glaucomatous eyes. DESIGN: Comparison of diagnostic approaches METHODS: 130 eyes of 80 healthy individuals and 275 eyes of 185 glaucoma patients with optic nerve head (ONH) OCTA and OCT imaging were included. Classification performance of a VGG16 CNN trained and tested on entire en face 4.5 mm x 4.5 mm radial peripapillary capillary OCTA ONH images was compared to performance of separate GBC models trained and tested on standard OCTA and OCT measurements. Five-fold cross-validation was used to test predictions for CNNs and GBCs. Areas under the precision recall curves (AUPRC) were calculated to control for training/test set size imbalance and were compared. RESULTS: Adjusted AUPRCs for GBC models were 0.89 (95% CI = 0.82, 0.92) for whole image vessel density GBC, 0.89 (0.83, 0.92) for whole Image capillary density GBC, 0.91 (0.88, 0.93) for combined whole Image vessel and whole image capillary density GBC, and 0.93 (0.91, 095) for RNFL thickness GBC. The adjusted AUPRC using CNN analysis of en face vessel density images was 0.97 (0.95, 0.99) resulting in significantly improved classification compared to GBC OCTA-based results and GBC OCT-based results (P ≤ 0.01 for all comparisons). CONCLUSION: Deep learning en face image analysis improves on feature-based GBC models for classifying healthy and glaucoma eyes.

Hamilton Glaucoma Center, Shiley Eye Institute and The Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA. Electronic address: cbowd@health.ucsd.edu.

Full article

Classification:

15 Miscellaneous



Issue 22-3

Change Issue


advertisement

Oculus