advertisement

Topcon

Abstract #96502 Published in IGR 22-3

Effects of acute stress, general anesthetics, tonometry, and temperature on intraocular pressure in rats

Nicou CM; Pillai A; Passaglia CL
Experimental Eye Research 2021; 210: 108727


Intraocular pressure (IOP) is important for eye health as abnormal levels can led to ocular tissue damage. IOP is typically estimated by tonometry, which only provides snapshots of pressure history. Tonometry also requires subject cooperation and corneal contact that may influence IOP readings. The aim of this research was to investigate IOP dynamics of conscious animals in response to stressors, common anesthetics, tonometry, and temperature manipulations. An eye of male Brown-Norway rats was implanted with a fluid-filled cannula connected to a wireless telemetry system that records IOP continuously. Stress effects were examined by restricting animal movements. Anesthetic effects were examined by varying isoflurane concentration or injecting a bolus of ketamine. Tonometry effects were examined using applanation and rebound tonometers. Temperature effects were examined by exposing anesthetized and conscious animals to warm or cool surfaces. Telemetry recordings revealed that IOP fluctuates spontaneously by several mmHg, even in idle and anesthetized animals. Environmental disturbances also caused transient IOP fluctuations that were synchronous in recorded animals and could last over a half hour. Animal immobilization produced a rapid sustained elevation of IOP that was blocked by anesthetics, whereas little-to-no IOP change was detected in isoflurane- or ketamine-anesthetized animals if body temperature (BT) was maintained. IOP and BT decreased precipitously when heat support was not provided and were highly correlated during surface temperature manipulations. Surface temperature had no impact on IOP of conscious animals. IOP increased slightly during applanation tonometry but not rebound tonometry. The results show that IOP is dynamically modulated by internal and external factors that can activate rapidly and last long beyond the initiating event. Wireless telemetry indicates that animal interaction induces startle and stress responses that raise IOP. Anesthesia blocks these responses, which allows for better tonometry estimates of resting IOP provided that BT is controlled.

Medical Engineering Department, University of South Florida, Tampa, FL, 33620, USA.

Full article

Classification:

15 Miscellaneous



Issue 22-3

Change Issue


advertisement

Topcon