advertisement

Topcon

Abstract #98207 Published in IGR 22-4

Hybrid Variation-Aware Network for Angle-Closure Assessment in AS-OCT

Hao J; Li F; Hao H; Hao H; Fu H; Xu Y; Higashita R; Zhang X; Liu J; Zhao Y
IEEE Transactions on Medical Imaging 2022; 41: 254-265


Automatic angle-closure assessment in Anterior Segment OCT (AS-OCT) images is an important task for the screening and diagnosis of glaucoma, and the most recent computer-aided models focus on a binary classification of anterior chamber angles (ACA) in AS-OCT, i.e., open-angle and angle-closure. In order to assist clinicians who seek better to understand the development of the spectrum of glaucoma types, a more discriminating three-class classification scheme was suggested, i.e., the classification of ACA was expended to include open-, appositional- and synechial angles. However, appositional and synechial angles display similar appearances in an AS-OCT image, which makes classification models struggle to differentiate angle-closure subtypes based on static AS-OCT images. In order to tackle this issue, we propose a 2D-3D Hybrid Variation-aware Network (HV-Net) for open-appositional-synechial ACA classification from AS-OCT imagery. Specifically, taking into account clinical priors, we first reconstruct the 3D iris surface from an AS-OCT sequence, and obtain the geometrical characteristics necessary to provide global shape information. 2D AS-OCT slices and 3D iris representations are then fed into our HV-Net to extract cross-sectional appearance features and iris morphological features, respectively. To achieve similar results to those of dynamic gonioscopy examination, which is the current gold standard for diagnostic angle assessment, the paired AS-OCT images acquired in dark and light illumination conditions are used to obtain an accurate characterization of configurational changes in ACAs and iris shapes, using a Variation-aware Block. In addition, an annealing loss function was introduced to optimize our model, so as to encourage the sub-networks to map the inputs into the more conducive spaces to extract dark-to-light variation representations, while retaining the discriminative power of the learned features. The proposed model is evaluated across 1584 paired AS-OCT samples, and it has demonstrated its superiority in classifying open-, appositional- and synechial angles.

Full article

Classification:

15 Miscellaneous



Issue 22-4

Change Issue


advertisement

Oculus