advertisement
Glaucoma, the second leading cause of blindness worldwide, is a heterogeneous group of ocular disorders characterized by structural damage to the optic nerve and retinal ganglion cell (RGC) degeneration, resulting in visual dysfunction by interrupting the transmission of visual information from the eye to the brain. Elevated intraocular pressure is the most important risk factor; thus, several models of ocular hypertension have been developed in rodents by either genetic or experimental approaches to investigate the causes and effects of the disease. Among those, some limitations have been reported such as surgical invasiveness, inadequate functional assessment, requirement of extensive training, and highly variable extension of retinal damage. The present work characterizes a simple, low-cost, and efficient method to induce ocular hypertension in rodents, based on low-temperature, full-circle cauterization of the limbal vascular plexus, a major component of aqueous humor drainage. The new model provides a technically easy, noninvasive, and reproducible subacute ocular hypertension, associated with progressive RGC and optic nerve degeneration, and a unique post-operative clinical recovery rate that allows in vivo functional studies by both electrophysiological and behavioral methods.
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro; rafa.lani@biof.ufrj.br.
Full article