advertisement

Topcon

Abstract #18545 Published in IGR 3-3

Effect of two mutations of human CYP1B1, G61E and R469W on stability and endogenous steroid substrate metabolism

Jansson I; Stoilov I; Sarfarazi M; Schenkman JB
Pharmacogenetics 2001; 11: 793-801


CYP1B1 is linked to normal eye development by the disease phenotype, primary congenital glaucoma (PCG). CYP1B1 mRNA was expressed in a number of human fetal tissue cDNA libraries, supporting the suggestion of its involvement in tissue development. Highest expression levels were found in thymus and kidney, followed by spleen. A considerably lower level was observed in lung, cardiac and skeletal muscle. No expression was detected in liver or brain. CYP1B1 is able to metabolize steroid hormones. Testosterone was a poor substrate and activity with progesterone was six-fold higher, but estradiol was the preferred substrate, exhibiting a greater metabolite profile with CYP1B1 than with CYP1A2. Major metabolites were A-ring hydroxylations (75-80%). Others were 15α-, 6α-, 16α- and 6β-hydroxy metabolites. Two CYP1B1 mutations found in families with the PCG phenotype in which incomplete penetrance is seen were expressed in Escherichia coli. G61E, a hinge region mutation, and R469W, a heme region mutation, were shown to code for holoenzymes. G61E had greatly diminished stability, while the R469W holoenzyme, if anything, was stabilized. Both mutants showed compromised catalytic activity. The extent of isomeric site activity diminution was not proportional, resulting in alterations in the metabolite profiles. The results suggest that if a metabolite of CYP1B1 or elimination of a metabolite by CYP1B1 is necessary for normal embryonic or fetal tissue development, the appearance of these two mutations could result in developmental abnormalities. The altered activities of the mutants and ability of CYP1B1 to respond to external challenge may be the basis for the observed incomplete penetrance.

Dr I. Jansson, Department of Pharmacology, Laboratory of the Department of Surgery, University of Connecticut Health Center, Farmington, CT, USA


Classification:

1.2 Population genetics (Part of: 1 General aspects)



Issue 3-3

Change Issue


advertisement

Oculus