advertisement

Topcon

Abstract #57025 Published in IGR 16-2

Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices

Pinto LM; Costa EF; Melo LA; Gross PB; Sato ET; Almeida AP; Maia A; Paranhos A
Investigative Ophthalmology and Visual Science 2014; 55: 3074-3080


PURPOSE: We examined the structure-function relationship between two perimetric tests, the frequency doubling technology (FDT) matrix and standard automated perimetry (SAP), and two optical coherence tomography (OCT) devices (time-domain and spectral-domain). METHODS: This cross-sectional study included 97 eyes from 29 healthy individuals, and 68 individuals with early, moderate, or advanced primary open-angle glaucoma. The correlations between overall and sectorial parameters of retinal nerve fiber layer thickness (RNFL) measured with Stratus and Spectralis OCT, and the visual field sensitivity obtained with FDT matrix and SAP were assessed. The relationship also was evaluated using a previously described linear model. RESULTS: The correlation coefficients for the threshold sensitivity measured with SAP and Stratus OCT ranged from 0.44 to 0.79, and those for Spectralis OCT ranged from 0.30 to 0.75. Regarding FDT matrix, the correlation ranged from 0.40 to 0.79 with Stratus OCT and from 0.39 to 0.79 with Spectralis OCT. Stronger correlations were found in the overall measurements and the arcuate sectors for both visual fields and OCT devices. A linear relationship was observed between FDT matrix sensitivity and the OCT devices. The previously described linear model fit the data from SAP and the OCT devices well, particularly in the inferotemporal sector. CONCLUSIONS: The FDT matrix and SAP visual sensitivities were related strongly to the RNFL thickness measured with the Stratus and Spectralis OCT devices, particularly in the overall and arcuate sectors.

Full article

Classification:

6.6.2 Automated (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)
6.6.3 Special methods (e.g. color, contrast, SWAP etc.) (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)



Issue 16-2

Change Issue


advertisement

WGA Rescources