advertisement
BACKGROUND: Steroid-induced ocular hypertension is currently treated in the same way as primary open-angle glaucoma. However, the treatment is often suboptimal and is associated with adverse effects. We evaluated the oculohypotensive effects of topical trans-resveratrol in rats with steroid-induced ocular hypertension and involvement of adenosine receptors (AR) in intraocular pressure (IOP) lowering effect of trans-resveratrol. METHODS: The oculohypotensive effect of unilateral single-drop application of various concentrations of trans-resveratrol was first studied in oculonormotensive rats. Concentration with maximum effect was similarly studied in rats with steroid-induced ocular hypertension. Involvement of AR was studied by observing the alterations of IOP in response to trans-resveratrol after pretreating animals with AR subtype-specific antagonists. Additionally, we used computational methods, including 3D modelling, 3D structure generation and protein-ligand interaction, to determine the AR-trans-resveratrol interaction. RESULTS: All concentrations of trans-resveratrol produced significant IOP reduction in normotensive rat eyes. Maximum mean IOP reduction of 15.1% was achieved with trans-resveratrol 0.2%. In oculohypertensive rats, trans-resveratrol 0.2% produced peak IOP reduction of 25.2%. Pretreatment with A1 antagonist abolished the oculohypotensive effect of trans-resveratrol. Pretreatment with A3 and A2A AR antagonists produced significant IOP reduction in both treated and control eyes, which was further augmented by trans-resveratrol application in treated eyes. Computational studies showed that trans-resveratrol has highest affinity for A2B and A1 , followed by A2A and A3 AR. CONCLUSION: Topically applied trans-resveratrol reduces IOP in rats with steroid-induced ocular hypertension. Trans-resveratrol-induced oculohypotension involves its agonistic activity at the A1 AR.
Faculty of Medicine, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor.
Full article5.1 Rodent (Part of: 5 Experimental glaucoma; animal models)
9.4.1 Steroid-induced glaucoma (Part of: 9 Clinical forms of glaucomas > 9.4 Glaucomas associated with other ocular and systemic disorders)
3.8 Pharmacology (Part of: 3 Laboratory methods)