advertisement

Topcon

Abstract #59230 Published in IGR 16-3

Neural stem cell-based intraocular administration of ciliary neurotrophic factor attenuates the loss of axotomized ganglion cells in adult mice

Flachsbarth K; Kruszewski K; Jung G; Jankowiak W; Riecken K; Wagenfeld L; Richard G; Fehse B; Bartsch U
Investigative Ophthalmology and Visual Science 2014; 55: 7029-7039

See also comment(s) by Jeffrey Goldberg


PURPOSE: To analyze the neuroprotective effect of intravitreally grafted neural stem (NS) cells genetically modified to secrete ciliary neurotrophic factor (CNTF) on intraorbitally lesioned retinal ganglion cells (RGCs) in adult mice. METHODS: Adherently cultivated NS cells were genetically modified to express a secretable variant of mouse CNTF together with the fluorescent reporter protein Venus. Clonal CNTF-secreting NS cell lines were established using fluorescence activated cell sorting, and intravitreally grafted into adult mice 1 day after an intraorbital crush of the optic nerve. Brn-3a-positive RGCs were counted in flat-mounted retinas at different postlesion intervals to evaluate the neuroprotective effect of the CNTF-secreting NS cells on the axotomized RGCs. Anterograde axonal tracing experiments were performed to analyze the regrowth of the injured RGC axons in CNTF-treated retinas. RESULTS: Intravitreally grafted NS cells preferentially differentiated into astrocytes that survived in the host eyes, stably expressed CNTF, and significantly attenuated the loss of the axotomized RGCs over a period of at least 4 months, the latest postlesion time point analyzed. Depending on the postlesion interval analyzed, the number of RGCs in eyes with grafted CNTF-secreting NS cells was 2.8-fold to 6.4-fold higher than in eyes with grafted control NS cells. The CNTF-secreting NS cells additionally induced long-distance regrowth of the lesioned RGC axons. CONCLUSIONS: Genetically modified clonal NS cell lines may serve as a useful tool for preclinical studies aimed at evaluating the therapeutic potential of a sustained cell-based intravitreal administration of neuroprotective factors in mouse models of glaucoma.

Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Full article

Classification:

2.17 Stem cells (Part of: 2 Anatomical structures in glaucoma)
5.1 Rodent (Part of: 5 Experimental glaucoma; animal models)
11.8 Neuroprotection (Part of: 11 Medical treatment)



Issue 16-3

Change Issue


advertisement

Oculus