advertisement

Topcon

Abstract #20787 Published in IGR 10-1

Mechanisms regulating plasminogen activators in transformed retinal ganglion cells

Rock N; Chintala SK
Experimental Eye Research 2008; 86: 492-499


Irreversible loss of retinal ganglion cells (RGCs) is a major clinical issue in glaucoma, but the mechanisms that lead to RGC death are currently unclear. We have previously reported that elevated levels of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) cause the death of RGCs in vivo and transformed retinal ganglion cells (RGC-5) in vitro. Yet, it is unclear how secreted proteases such as tPA and uPA directly cause RGCs' death. In this study, by employing RGC-5 cells, we report that tPA and uPA elicit their direct effect through the low-density lipoprotein-related receptor-1 (LRP-1). We also show that blockade of protease-LRP-1 interaction leads to a complete reduction in autocrine synthesis of tPA and uPA, and prevents protease-mediated death of RGC-5 cells. RGC-5 cells were cultured in serum-free medium and treated with 2.0μm Staurosporine to induce their differentiation. Neurite outgrowth was observed by a phase contrast microscope and quantified by NeuroJ imaging software. Proteolytic activities of tPA and uPA were determined by zymography assays. Cell viability was determined by MTT assays. Compared to untreated RGC-5 cells, cells treated with Staurosporine differentiated, synthesized and secreted elevated levels of tPA and uPA, and underwent cell death. In contrast, when RGC-5 cells were treated with Staurosporine along with the receptor associated protein (RAP), proteolytic activities of both tPA and uPA were significantly reduced. Under these conditions, a significant number of RGC-5 cells survived and showed increased neurite outgrowth. These results indicate that LRP-1 regulates autocrine synthesis of tPA and uPA in RGC-5 cells and suggest that the use of RAP to antagonize the effect of proteases may be a way to prevent RGC death in glaucoma.

Dr. N. Rock, Eye Research Institute, Oakland University, 409 Dodge Hall, Rochester, MI 48309, USA


Classification:

2.13 Retina and retinal nerve fibre layer (Part of: 2 Anatomical structures in glaucoma)
3.6 Cellular biology (Part of: 3 Laboratory methods)
3.8 Pharmacology (Part of: 3 Laboratory methods)
11.8 Neuroprotection (Part of: 11 Medical treatment)



Issue 10-1

Change Issue


advertisement

Oculus