advertisement

Topcon

Abstract #57150 Published in IGR 16-2

Critical neuroprotective roles of heme oxygenase-1 induction against axonal injury-induced retinal ganglion cell death

Himori N; Maruyama K; Yamamoto K; Yasuda M; Ryu M; Omodaka K; Shiga Y; Tanaka Y; Nakazawa T
Journal of Neuroscience Research 2014; 92: 1134-1142


Although axonal damage induces significant retinal ganglion cell (RGC) death, small numbers of RGCs are able to survive up to 7 days after optic nerve crush (NC) injury. To develop new treatments, we set out to identify patterns of change in the gene expression of axonal damage-resistant RGCs. To compensate for the low density of RGCs in the retina, we performed retrograde labeling of these cells with 4Di-10ASP in adult mice and 7 days after NC purified the RGCs with fluorescence-activated cell sorting. Gene expression in the cells was determined with a microarray, and the expression of Ho-1 was determined with quantitative PCR (qPCR). Changes in protein expression were assessed with immunohistochemistry and immunoblotting. Additionally, the density of Fluoro-gold-labeled RGCs was counted in retinas from mice pretreated with CoPP, a potent HO-1 inducer. The microarray and qPCR analyses showed increased expression of Ho-1 in the post-NC RGCs. Immunohistochemistry also showed that HO-1-positive cells were present in the ganglion cell layer (GCL), and cell counting showed that the proportion of HO-1-positive cells in the GCL rose significantly after NC. Seven days after NC, the number of RGCs in the CoPP-treated mice was significantly higher than in the control mice. Combined pretreatment with SnPP, an HO-1 inhibitor, suppressed the neuroprotective effect of CoPP. These results reflect changes in HO-1 activity to RGCs that are a key part of RGC survival. Upregulation of HO-1 signaling may therefore be a novel therapeutic strategy for glaucoma. © 2014 Wiley Periodicals, Inc.

Full article

Classification:

11.8 Neuroprotection (Part of: 11 Medical treatment)
5.1 Rodent (Part of: 5 Experimental glaucoma; animal models)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)
11.14 Investigational drugs; pharmacological experiments (Part of: 11 Medical treatment)



Issue 16-2

Change Issue


advertisement

Topcon