advertisement

Topcon

Zangwill LM 108

Showing records 1 to 25 | Display all abstracts from Zangwill LM

76514 Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent
Gracitelli CPB
JAMA ophthalmology 2018; 136: 329-335
76968 Deep-Layer Microvasculature Dropout by Optical Coherence Tomography Angiography and Microstructure of Parapapillary Atrophy
Suh MH
Investigative Ophthalmology and Visual Science 2018; 59: 1995-2004
76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Hou H
American Journal of Ophthalmology 2018; 189: 1-9
76793 Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glaucoma Suspect, and Healthy Eyes
Hou H
American Journal of Ophthalmology 2018; 190: 69-77
77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Manalastas PIC
American Journal of Ophthalmology 2018; 191: 140-148
76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Penteado RC
Journal of Glaucoma 2018; 27: 481-489
76300 The Association Between Macula and ONH Optical Coherence Tomography Angiography (OCT-A) Vessel Densities in Glaucoma, Glaucoma Suspect, and Healthy Eyes
Manalastas PIC
Journal of Glaucoma 2018; 27: 227-232
76541 Macular Vessel Density in Glaucomatous Eyes With Focal Lamina Cribrosa Defects
Ghahari E
Journal of Glaucoma 2018; 27: 342-349
76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Hou H
American Journal of Ophthalmology 2018; 189: 1-9
76793 Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glaucoma Suspect, and Healthy Eyes
Hou H
American Journal of Ophthalmology 2018; 190: 69-77
77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Christopher M
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756
76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Hou H
American Journal of Ophthalmology 2018; 189: 1-9
76793 Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glaucoma Suspect, and Healthy Eyes
Hou H
American Journal of Ophthalmology 2018; 190: 69-77
76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Murata H
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904
76300 The Association Between Macula and ONH Optical Coherence Tomography Angiography (OCT-A) Vessel Densities in Glaucoma, Glaucoma Suspect, and Healthy Eyes
Zangwill LM
Journal of Glaucoma 2018; 27: 227-232
77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Belghith A
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756
76793 Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glaucoma Suspect, and Healthy Eyes
Moghimi S
American Journal of Ophthalmology 2018; 190: 69-77
76933 Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma
Zangwill LM
Journal of Glaucoma 2018; 27: 481-489
76514 Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent
Zangwill LM
JAMA ophthalmology 2018; 136: 329-335
76505 Progression of Primary Open-Angle Glaucoma in Diabetic and Nondiabetic Patients
Shoji T
American Journal of Ophthalmology 2018; 189: 1-9
76541 Macular Vessel Density in Glaucomatous Eyes With Focal Lamina Cribrosa Defects
Bowd C
Journal of Glaucoma 2018; 27: 342-349
76968 Deep-Layer Microvasculature Dropout by Optical Coherence Tomography Angiography and Microstructure of Parapapillary Atrophy
Zangwill LM
Investigative Ophthalmology and Visual Science 2018; 59: 1995-2004
76967 Validating Variational Bayes Linear Regression Method With Multi-Central Datasets
Zangwill LM
Investigative Ophthalmology and Visual Science 2018; 59: 1897-1904
77080 Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes
Belghith A
American Journal of Ophthalmology 2018; 191: 140-148
77238 Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
Weinreb RN
Investigative Ophthalmology and Visual Science 2018; 59: 2748-2756

Issue 19-3

Change Issue


advertisement

Topcon