advertisement
6.9.5 Other (71)
Showing records 1 to 25
Display all abstracts in classification 6.9.5 Other
Search within classification 6.9.5 Other
84814 Automated Quantification of Macular Ellipsoid Zone Intensity in Glaucoma Patients: the Method and its Comparison with Manual QuantificationHa A
Scientific reports 2019; 9: 19771
85106 Hierarchical Cluster Analysis of Peripapillary Retinal Nerve Fiber Layer Damage and Macular Ganglion Cell Loss in Open Angle GlaucomaLee K
Korean Journal of Ophthalmology 2020; 34: 56-66
84550 Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus PhotographsJammal AA
American Journal of Ophthalmology 2020; 211: 123-131
84652 Automatic Anterior Chamber Angle Measurement for Ultrasound Biomicroscopy Using Deep LearningLi W
Journal of Glaucoma 2020; 29: 81-85
84090 Glaucoma Detection from Retinal Images Using Statistical and Textural Wavelet FeaturesAbdel-Hamid L
Journal of digital imaging 2020; 33: 151-158
84979 Current applications of machine learning in the screening and diagnosis of glaucoma: a systematic review and Meta-analysisMurtagh P
International Journal of Ophthalmology 2020; 13: 149-162
84734 Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure PriorZhou W
Computational and mathematical methods in medicine 2019; 2019: 8973287
84506 Regional Patterns in Retinal Microvascular Network Geometry in Health and DiseasePopovic N
Scientific reports 2019; 9: 16340
85039 Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographsLi F
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 851-867
85052 Diagnostic capability of a linear discriminant function applied to a novel Spectralis OCT glaucoma-detection protocolBambo MP
BMC Ophthalmology 2020; 20: 35
85149 Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected GlaucomaZapata MA
Clinical Ophthalmology 2020; 14: 419-429
85101 Diagnosis of Glaucoma on Retinal Fundus Images Using Deep Learning: Detection of Nerve Fiber Layer Defect and Optic Disc AnalysisMuramatsu C
Adv Exp Med Biol 2020; 1213: 121-132
85039 Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographsYan L
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 851-867
84506 Regional Patterns in Retinal Microvascular Network Geometry in Health and DiseaseVujosevic S
Scientific reports 2019; 9: 16340
84979 Current applications of machine learning in the screening and diagnosis of glaucoma: a systematic review and Meta-analysisGreene G
International Journal of Ophthalmology 2020; 13: 149-162
85052 Diagnostic capability of a linear discriminant function applied to a novel Spectralis OCT glaucoma-detection protocolFuentemilla E
BMC Ophthalmology 2020; 20: 35
85106 Hierarchical Cluster Analysis of Peripapillary Retinal Nerve Fiber Layer Damage and Macular Ganglion Cell Loss in Open Angle GlaucomaBae HW
Korean Journal of Ophthalmology 2020; 34: 56-66
84652 Automatic Anterior Chamber Angle Measurement for Ultrasound Biomicroscopy Using Deep LearningChen Q
Journal of Glaucoma 2020; 29: 81-85
84550 Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus PhotographsThompson AC
American Journal of Ophthalmology 2020; 211: 123-131
85149 Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected GlaucomaRoyo-Fibla D
Clinical Ophthalmology 2020; 14: 419-429
84734 Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure PriorYi Y
Computational and mathematical methods in medicine 2019; 2019: 8973287
84814 Automated Quantification of Macular Ellipsoid Zone Intensity in Glaucoma Patients: the Method and its Comparison with Manual QuantificationSun S
Scientific reports 2019; 9: 19771
84652 Automatic Anterior Chamber Angle Measurement for Ultrasound Biomicroscopy Using Deep LearningJiang Z
Journal of Glaucoma 2020; 29: 81-85
85039 Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographsWang Y
Graefe's Archive for Clinical and Experimental Ophthalmology 2020; 258: 851-867
85149 Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected GlaucomaFont O
Clinical Ophthalmology 2020; 14: 419-429
Issue 21-1
Change Issue
advertisement