advertisement

WGA Rescources

Editors Selection IGR 12-1

Surgical Treatment: SLT in NPG

Arthur Sit

Comment by Arthur Sit on:

55392 Comparison of Fluctuations of Intraocular Pressure Before and After Selective Laser Trabeculoplasty in Normal-tension Glaucoma Patients, Tojo N; Oka M; Miyakoshi A et al., Journal of Glaucoma, 2014; 23: e138-e143


Find related abstracts


Therapies that improve outflow facility, such as laser trabeculoplasty, will generally result in smaller IOP fluctuations than those that reduce aqueous humor production

Intraocular pressure (IOP) fluctuation has been suggested as a possible risk factor for glaucoma pathogenesis. Therapies that improve outflow facility, such as laser trabeculoplasty,1 will generally result in smaller IOP fluctuations than those that reduce aqueous humor production.2 Consequently, the effect of laser trabeculoplasty on IOP fluctuations has been of significant interest. A prior study using a sleep laboratory demonstrated that the typical nocturnal rise in IOP could be reduced by argon laser trabeculoplasty (ALT) even when the diurnal IOP was unchanged compared to baseline in medically treated glaucoma patients.3

In contrast to ALT, selective laser trabeculoplasty (SLT) appears to have similar IOP reduction, but the histological damage caused to the trabecular meshwork is far less.4 In order to investigate the effect of SLT on IOP fluctuations, Tojo et al. utilized the Triggerfish contact lens sensor (CLS) to measure 24-hour IOP patterns in normal tension glaucoma (NTG) patients before and after treatment. They calculated IOP fluctuations, defined as the difference between the minimum and maximum signal from the CLS in millivolt equivalents (mVeq), for the 24-hour, diurnal and nocturnal periods. The nocturnal period was identified based on a characteristic decrease in blinks during as detected by the CLS.

The authors found that SLT reduced IOP fluctuation during the nocturnal period, but not during the diurnal period or the 24-hour period. However, the authors did not report on the magnitude of signal change from the diurnal to nocturnal period, so it is unclear if there was a reduction of the typical nocturnal rise in IOP after SLT. The authors also assessed the acrophase for the 24-hour curves, which indicates when the peak IOP occurs. Interestingly, only one of ten patients changed acrophase, while the remaining subjects maintained either a diurnal, nocturnal or no acrophase pattern. This suggests that NTG patients tend to maintain their overall 24-hour IOP patterns even after mean IOP has been reduced by SLT treatment. One potential limitation of the study is that the CLS reports a signal in mVEq and is not calibrated to mmHg. While this limits the ability of the study to determine the magnitude of IOP change, the overall effect on IOP patterns would presumably be valid. Another limitation was the small size of the study, which included only 10 patients. Further studies with larger populations and longer follow-up will be required to determine if the reported reduction in nocturnal IOP fluctuations has any benefit beyond the reduction in mean IOP in NTG patients.

References

  1. Bru baker RF, Liesegang TJ. Effect of trabecular photocoagulation on the aqueous humor dynamics of the human eye. Am J Ophthalmol 1983;96:139-147.
  2. Bru baker RF. Targeting outflow facility in glaucoma management. Surv Ophthalmol 2003;48 Suppl 1:S17-20.
  3. Lee AC, Mosaed S, Weinreb RN, Kripke DF, Liu JH. Effect of laser trabeculoplasty on nocturnal intraocular pressure in medically treated glaucoma patients. Ophthalmology 2007;114:666-670.
  4. Kra mer TR, Noecker RJ. Comparison of the morphologic changes after selective laser trabeculoplasty and argon laser trabeculoplasty in human eye bank eyes. Ophthalmology 2001;108:773-779.


Comments

The comment section on the IGR website is restricted to WGA#One members only. Please log-in through your WGA#One account to continue.

Log-in through WGA#One

Issue 12-1

Change Issue


advertisement

Oculus